Face2Face: an innovative way to face recognition
DL-IC 2018 Project

D’ Amico Edoardo
Politecnico di Milano

damicoedoardo95@gmail.com

Abstract

In this paper we present a method to compare two im-
ages and get a similarity measure of these. Common usages
of such a technique are several, first of all, authentication
and face matching.

This system, called Face2Face, uses a deep convolutional
neural network to map a couple of images into a vector
of features which capture the similarity between the two
images. Then, this vector is processed by the last fully-
connected layers of the network which output a measure in
the range [0,1] representing the probability of having de-
picted the same person on the two images. Training has
been done by stacking couples of images one on top of the
other, exploiting convolution filters in order to capture face
similarities. This method boosts also the size of the training
set: in fact, each image of the N in the training set can be
coupled with all the others, so the training samples that can
be obtained € O(N?).

The main benefit of this mechanism are essentially the al-
most absence of hardware needed (only a camera) and the
ease of use for the actual implementation.

1. Introduction

Nowadays, authentication is one of the most critical
point of computer security. Authentication is a mechanism
that allows a user to exhibit a proof of his identity in order
to be recognized by a particular system. Aim of this project
is to implement a biometric authentication software, based
on face recognition, using a convolutional neural network.
The only hardware requirement is a camera. The process of
authentication is composed by the following steps:

e User records a set of photos of himself (sample photos)
and saves them into the system

e When user wants to authenticate, the system asks for a
photo

e If the similarity between the sample photos and the

Gabbolini Giovanni
Politecnico di Milano

giovanni.gabbolini@gmail.com

Parroni Federico
Politecnico di Milano

federico.parroni@live.it

current one is greater than a fixed threshold, user is
authenticated positively

The main advantage of this approach 1is the
cost/performance tradeoff that we can achieve: cur-
rently, costs of commercial biometric scanners are in the
order of hundreds of euros, while a suitable camera for
this technique costs about 10-20€ and the probability of
granting access to a wrong user is in the order of 1 over
1000.

This work should provide a different approach from the
current state of the art to compare two images using a deep
convolutional neural network, resulting in a lightweight and
real-time process. The neural network takes as input two
images and outputs a similarity value between 0 and 1, so it
can be directly used without other intermediate softwares.
The methodolody used to train the network requires a quite
low number of photos to build a large amount of training
samples, as described later in 4.

2. Related work

Our work is based on training a deep convolutional neu-
ral network, using a purely data driven approach, to extract
features from couple of images than use it as input to a fully
connected network to say wheter two images representing
faces are of the same person or not. Similar work has been
carried out some using directly deep convolutional neural
network to give a response other using it as a support for
the extraction of features used as input for SVMs.

The most relevant are reported below.

Schroff et al. [1] use a deep convolutional neural
network to generate an embedding f(z), from an image
x into a feature space RY, such that the squared distance
between all faces of the same identity is small, whereas
the squared distance between a pair of face images from
different identities is large. To achieve that has been used
the so called ’triplet loss’ that allows the faces for one
identity to live on a manifold, while still enforcing the
distance of two different faces to be maximum. The work

presented does not directly solve the problem of the face
recognition but create a proper enviroment in which a
simple K-NN classifier can solve the task.

Aleju [9] proposes a network presenting two branches,
one per image. Each branch applies a few convolutions
and ends in a fully connected layer. The outputs of both
branches are then merged and further processed by another
fully connected layer, before making the final yes-no-
decision (whether both images show the same person).

Taigman ef al. [10] propose a multi-stage approach
that aligns faces to a general 3D shape model. A multi-
class net-work is trained to perform the face recognition
task on over four thousand identities. The authors also
experimented with a so called Siamese network where
they directly opti- mize the L1-distance between two face
features. Their best performance on LFW (97.35%) has
been obtained from an ensemble of three networks using
different alignments and color channels. The predicted
distances (non-linear SVM predictions) of those networks
are combined using a non-linear SVM.

Zhenyao et al. [11] employ a deep network to warp faces
into a canonical frontal view and then learn CNN that clas-
sifies each face as belonging to a known identity. For face
verification, PCA on the network output in conjunction with
an ensemble of SVMs is used.

3. Proposed approach

To accomplish our work we used a convolutional neu-
ral network. This kind of model is nowadays the most
widely used for Image Recognition tasks. Many ways have
been proposed to tackle the problem of stating similarity
among different images, for example Schroff er al. [1].
Our solution is based on the idea of using directly convo-
lutional layers to extract similarity, which is in our case ex-
pressed in terms of identity of people. In order to follow this
idea, we used as input of our convolutional neural network
two gray scale images stacked one upon the other. Then,
two-dimensional convolutional layers filter those two lev-
els images, transforming the initial input. The vector which
comes from the flattenization of the last convolutional layer
output represents an embedding of the initial input which
would naturally tell the relation between the two images in
terms of similarity among identities of people appearing in
those. Then the vector of features is used as input of a fully
connected neural network, which will, at the really end, out-
put a number between 0 and 1, i.e. the probability of having
two photos who depict the same person.

Figure 1: Convolution between two stacked image. Large
convolution filters can help to capture similiarities.

3.1. Mathematics

We can consider training samples as i.i.d observations
from a Bernoulli random variable. We want that our model
approximates as well as possible this Bernoulli variable (¢,
can assume only values O or 1):

Pty = lzn,w) =y(z,) (1

where y(z,,) is the output of the convolutional neural net-
work for the nt" sample.

We want to maximize the likelihood of getting the right
ouput. To do so, we have to choose the vector of coeffi-
cients w such that:

N
argmax J(w) = argmaXH yulm (1 — yn)lftn)
w w

Passing to the negative log, we get the standard binary
crossentropy:

N
argmin J(w) = — Z {tn log ¥ + (1 —t,,) log(1 — yy)
w n=1
3)
3.2. Model Selection

The model selection has been one of the main challanges
during our activity: we did not have other already existing
works from which transfer the structure of the network, at
least no other research product which was using the same
approach to achieve the same goal. So first we decided to
go for a Cross Validation among the possible models. Even
if the amount of data that we managed to harvest (4.1.1)
was enough to proceed with this idea, the methodology ap-
peared to be computationally unfeasible. So we decided to
go for a standerd validation approach. Of course we did not
validate every possible model but instead we listed a set of
fifteen networks of growing complexity. As a guideline for

Layer Kernel | Output shape | # of params
Conv2D 3x3 (16) | (80, 80, 16) 304
MaxPooling2D | 2x2 (40, 40, 16) 0
Dropout p=0.1 (40, 40, 16) 0
Conv2D 3x3 (16) | (40,40, 16) 2320
MaxPooling2D 2x2 (20, 20, 16) 0
Dropout p=0.1 (20, 20, 4) 0
Conv2D 3x3 (16) | (20,20, 16) 2320
MaxPooling2D 2x2 (10, 10, 16) 0
Dropout p=0.1 (10, 10, 16) 0
Conv2D 3x3 (16) | (10, 10, 16) 2320
Flatten (1600) 0

Dense 128 (128) 204928
Dropout p=0.1 (128) 0
Dense 128 (128) 16512
Dense 128 (128) 16512
Dense (softmax) | 2) 258
Total 245474

Table 1: Structure of the network

this ranking we have mainly considered Bengio et al. [2] To
have the most unbiased estimate of the true error from our
validation set, we randomly split the data into validation and
training set before the actual validation procedure, and be-
fore any of the candidate network was trained and evaluated
on the data. When validating the various models, we used
Adam Optimizer: this guaranteed to be free from the choice
of the learning rate, removing one degree of freedom from
our validation procedure. The resulting model is presented
in Table 1.

All the models have been trained for threehundred epochs
changing dinamically the training data: when the model
started overfitting i.e. when the training and test error were
starting to be uncorrelated, we swapped to a different train-
ing set, sampled from the whole set of training samples.
Every sampled chunk counted roughly fifty thousand cou-
ples of images. This technique was on one hand necessary,
because the whole dataset was not fitting on memory, and
on the other hand turned out to be a powerful regularization
tool.

4. Experiments
4.1. Datasets

4.1.1 Own Dataset

We gathered our own data through a web page [3] that we
set up. Through it, people had the possibility to upload their
own photos. As a result, we obtained a set of more than
eighty folders of photos, each one belonging to a different

0

50

Figure 2: Example of nine augmented photos obtained from
a starting one, which is depicted at the bottom-right. We can
see the good variety of images obtained from our augmen-
tation procedure.

person. On average, we managed to get ten photos per per-
son. Those photos are characterized by really regular poses
of the faces, because the contributors were explicitly asked
in the website to shot the photos keeping the camera in from
of them, while they were watching it, as they were unlock-
ing a device.

Data Augmentation The quantity of data that we ob-
tained is not even close to the usual amount used in large
scale Deep Learning projects. So we proceeded with aug-
mentation procedures of our training set. In particular we
resorted to the Augumentor Python library [4]. This li-
brary allows to generate, starting from a set of images, other
ones, obtained from various transformations of the former
set. Those transformations can be customized and can be
applied randomly to each image. It follows that each aug-
mented image is the combination of the application of a ran-
dom number of transformation specified by the developer,
resulting in a great variety in the augmented set.
The transformations applied, with probabilities, are:

o Flip left-right with probability 0.5;

e Skew left-right with probability 1: the skew magni-
tude is random and varies from 0 to 0.2, which exper-
imentally guarantees resulting images which are not
deformed;

o Alter brightness with probability 1: we perform a non
linear trasformation as suggested in [5], using parame-
ters # = 1 and ¢ = 1 respectively. In particular we
used this transformation increasing the pixel bright-

ness and decreasing it with probability 0.5 in both
cases;

e Adaptive equalization [6] with probability 0.5, using a
clip limit of 0.01;

In particular the last two methods were employed in order to
obtain a wider variety of lighting conditions, which turned
out to be a characteristic that was lacking the most in our
own dataset. Using this augmentation procedure, we crafted
five brand new images from just one, obtaining fifty images
per person on our dataset.

Data preprocessing The data that we managed to harvest
and the results of the augmentation procedure were affected
by noise and really low regularity. To hope to get good re-
sults, we needed to have all the images in a standardized
form factor. To accomplish this idea, we set up a pipeline
useful to apply to all the images those following steps:

1. Find the face in the image and crop it;
2. Resize the image to a standard size;

3. Rotate the image in order to get the person eyes in a
fixed position;

Finding a face in an image and pick the bounding box
which includes it is a really known task in Computer Vi-
sion and really efficient and reliable algorithms exist. We
resorted to the HOG Algorithm [7]. The resulution is set to
the standard size of 80x80 pixels. A more tough problem
is rotating an image so that the eyes are aligned at the same
position, however a detailed description of how to tackle
this problem can be found in [8]

Couple creation At this point, we have a considerable
number of folders, one for each identity, each one contain-
ing a set of, on average, fifty augmented photos. Still, we
are missing our actual dataset, which is composed of cou-
ples of images and a labels: if the two photos come from
the same folder, then the label will be 0, otherwise 1. Since
we are considering couples, the number of training samples
grows not linearly with the number of photos, but quadrat-
ically: for any photo in a folder, we can pair it with all the
other photos on the folder and with an equal number of pho-
tos picked from other random folders. In formulas, a folder
with N photos will give 2(N — 1)? training samples. Using
this trick, at the really end we managed to have a balanced
dataset with more than one million samples.

4.1.2 Academic Datasets

Labelled Faces in the Wild (LFW) We have tested the
performance of our network in this well known dataset

Figure 3: Examples of the application of the pipeline. On
the left we see the processed images, on the right we have
the original ones. We see the difference of sizing, the eye
alignment and the face that has been cropped

(standard de-facto academic dataset for face verification).
We have built the couples and assigned the labels as we did
in our own dataset, and then evaluated the accuracy.

4.2. Evaluation

We have evaluated our method on a test set that accounts
for approximately the 20% of the intial dataset that we gath-
ered up, so the test data has the same distribution of our
training set, but disjoint identities.

A substantial difference between the training and test set
images is that the test set has not been augmented so that the
evaluation of the performance will be unbiased as much as
possible with respect to the training set, augmentation has
been performed only on the training set (see next subsec-
tion).

We have evaluated the method on the face verification
task (say wheter two face images are representing the same
person) using as prediction the output of the net Y (4, 5)

E: [0.0207 0.9793] E: [0.0169 0.9831] E: [0.0165 0.9835]

E: [0.0188 0.9812]

E: [0.0128 0.9872] E: [0.0059 0.9941]
w7

Figure 4: Examples of false positive training samples, ob-
tained with a threshold equals to 0.975. On top of each
couple we have the prediction of the network i.e. the second
number, but all those images were labelled as 0, infact they
depict the same person

representing the probability of having the same person on
the two images. All faces pairs (7, j) of the same identity
are denoted with Nggme, Whereas all pairs of different
identities are denoted with Ng; ¢ .

We define the set of all true accepts as
TA(thld) = {(i,J) € Neame, withY (i,j) > thld} (4)

these are the face pairs (4, j) that were correctly classified
at treshold thld. Similarly we can define the False accepts
as

FA(thld) = {(i,§) € Ngiss, withY (i,5) > thid} (5)

is the set of all pairs that was misclassified as same, this fig-
ure of merit has a main role on the evaluation of our work
since the method has been created with the aim of being
used as a security check, and so false accepts cannot be tol-
erated.

Obtained performance On our test set we have reached
test accuracy = 0.915 with threshold=0.5

To further evaluate the performance, also the ROC curve
and the AUC parameter has been analyzed (Figure 5).

The AUC obtained is 0.97 and from the ROC curve we
can extract important information on which value the tresh-
old of the model has to be set depending on the utilization
purpose of the net. Since the model has been developed
for security reasons, a possible idea is to tolerate at most
a 0.1% of false positive. To achieve that the treshold has

Receiver Operating Characteristic
1.0

-
0.8 4 P
.

o
o
\,

o
kS

True Positive Rate

024 s
>

— AUC =0.97

e

0.0 T T T T

0.0 0.2 04 0.6 08 10
False Positive Rate

Figure 5: ROC curve of the model.

Treshold | Accuracy Precision
0.5 0.915 0.9278
0.975 0.845 0.9985

Table 2: Perfomance comparison between the case of
threshold 0.5 and 0.975 on the Test set.

to be set to 0.975 as suggested by the ROC curve, so that
the network will recognize a couple of faces (i,7) as the
same person only when Y (¢, 7) > 0.975. The performance
between two different tresholds can be compared using the
confusion matrices (Figure 6) taking into account also the

N TA(thld)
P = '
recision(thid) = iy + FAGha)” ©

The accuracies obtained changing the two tresholds are
comparable but the Precision is considerably higher when
the treshold is set to 0.975 as can be seen from Table 2.

LFW evaluation On the Labelled face in the wild dataset
we have reached a

test accuracy = 0.78 with threshold=0.5

This performance can be justified by the fact that the
faces in the dataset are not gathered up to be used as training
data for authentication purpose in fact most of the images
are depicting a face in an appropriate pose (1.e the person is
not looking at the camera). A better accuracy and precision
can be reached by raising the treshold to 0.975 as shown on
Table 3. As we see, the accuracy is not really high, but the
precision is: only

4.3. Usage example

We used our trained model to verify the live test per-
formance in a simple application. First, the app acquires a

Confusion matrix

0.9

0.8

0.7

0.6

- 0.5

True label

r0.4

0.3

ro2

rol

Predicted label

Confusion matrix

0.8

0.6

True label

F 0.4

F02

Predicted label

Figure 6: comparison between the confusion matrix with two different tresholds 0.5(on the left) and 0.975

Treshold | Accuracy Precision
0.5 0.745 0.7474
0.975 0.775 0.9824

Table 3: Perfomance comparison between the case of
threshold 0.5 and 0.975 on the LFW dataset.

sample image of the user, then it starts a live session. Dur-
ing that, it captures frames from the camera. For each of
them, a frame-sample image couple is created and is given
as input to the model, that outputs the prediction in a real-
time manner. From our tests using general purpose laptops,
the maximum number of predictions that can me made is
around 8 predictions/sec.

5. Conclusion

We provide a model useful to guarantee authentication in
general purpose applications, with a good tradeoff between
implementation cost and performance that can be used in
real-time scenarios, as shown by our experiment. The ad-
vantage of our method is that it can be used as a blackbox:
given two images, it will output a probability that the faces
depicted belong to the same person. Future work can be
done in training the same selected network for more epochs
and with more identities than the ones that we manage to
gather. Moreover, a lower number of false positives can be
achieved setting up an ensemble of models and then acting
in a majority voting way.

Acknowledgements

We would like to thank all the people that contributed
with their own photos to our project, which made our work
concretely possible.

References

[1] Florian Schroff, Dmitry Kalenichenko and James
Philbin FaceNet: A unified embedding for face recog-
nition and clustering. 1,2

[2] Yoshua Bengio Practical Recommendations for
Gradient-Based Training of Deep Architectures 3

[3] http://keyblade95.altervista.org/faceupload/ 3
[4] https://github.com/mdbloice/Augmentor 3

[5] https://stackoverflow.com/questions/19363293/whats-
the-fastest-way-to-increase-color-image-contrast-with-
opencv-in-python-c 3

[6] https://towardsdatascience.com/image-augmentation-
for-deep-learning-using-keras-and-histogram-
equalization-9329f6ae5085 4

[7]1 https://www.learnopencv.com/histogram-of-oriented-
gradients/ 4

[8] https://www.pyimagesearch.com/2017/05/22/face-
alignment-with-opencv-and-python/ 4

[9] https://github.com/aleju/face-comparer 2

[10] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deep-
face: Closing the gap to human-level performance in
face verification. 2

[11] Z. Zhu, P. Luo, X. Wang, and X. Tang. Recover canon-
ical view faces in the wild with deep neural networks.
2

[12] https://github.com/keyblade95/DeepLearningProject/

